If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49v^2+42v-16=0
a = 49; b = 42; c = -16;
Δ = b2-4ac
Δ = 422-4·49·(-16)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-70}{2*49}=\frac{-112}{98} =-1+1/7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+70}{2*49}=\frac{28}{98} =2/7 $
| .5t^2+2t=50 | | 11=2/3(8x-12) | | .5t^2+2t=0 | | w-8=27 | | Y=0.5x*79 | | 8(10x+8)=16 | | 0.5x+4+0.9x=x+5 | | 14-z=13 | | 4(x-5)+2x=-2x(x-6) | | 4/3x-6=1/3 | | 7h/4+8=11+h | | 3x+5x-1=20 | | Y=-16+3x | | -12x^=156x | | 50000=300(2^(x/3)) | | x/3.5=33=30 | | 3x-10=55 | | (X+1)(x-3)=x2-3x+x-3 | | 0.66d=24 | | 1/2y-3=3/5 | | 1/11-3x=-3x+4/11 | | -(6a+6)=5(a-7) | | −20= −28+4t | | 3=1/2(n-1) | | 12=5x-14 | | -24=4(w-1) | | -4n-8=2n+4 | | -6x-105=55+2x | | 3/8(8+4x)-1/3(6x+3)=9 | | 3k^2-22k+7=0 | | 8x-12=-3x+6 | | 4x-45=17+2.45x= |